
Generating Feasible Input Sequences for Extended Finite
State Machines (EFSMs) using Genetic Algorithms

Karnig Derderian
Brunel University

Department of Information Systems and
Computing

Uxbridge UB8 3PH, UK

karnig.derderian@brunel.ac.uk

Robert M. Hierons
Brunel University

Department of Information Systems and
Computing

Uxbridge UB8 3PH, UK

rob.hierons@brunel.ac.uk

Mark Harman
Department of Computer Science

King’s College London
London, WC2R 2LS, UK

mark@dcs.kcl.ac.uk

Qiang Guo
Brunel University

Department of Information Systems and
Computing

Uxbridge UB8 3PH, UK

qiang.guo@brunel.ac.uk

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing Tools

General Terms
Algorithms, Theory

Keywords
EFSM, GA, Input Sequences, Transition Path

1. INTRODUCTION
Testing is an important part of the software engineering

process but can be time consuming, error-prone and expen-
sive. Test automation can help reduce these problems.

Many state based systems, like protocols, have been mod-
elled as finite state machines (FSMs) and extended finite
state machines (EFSMs). They have been an effective method
of modelling because a variety of techniques and automated
tools exist that work with them. To ensure the reliability
of these systems once implemented they must be tested for
conformance to their specification.

Usually the implementation of a system specified by an
FSM or EFSM is tested for conformance by applying a se-
quence of inputs and verifying that the corresponding se-
quence of outputs is that which is expected. This commonly
involves executing a number of transition paths, until all
transitions have been tested at least once. In EFSMs the
feasibility of a transition path depends on satisfying all the
transition guards involved, in addition to finding a specific
input sequence to trigger these transitions.

This poster addresses the issue of finding feasible transi-
tion paths and generating input sequences for systems based
on the EFSM model. A novel way of abstracting parts of

Copyright is held by the author/owner.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

the data in the EFSM in order to facilitate the generation
of a feasible transition paths using GA is presented.

2. PROBLEM AND SOLUTION
As EFSMs we refer to those Mealy (finite state) machines

with parameterised input and output, internal variables, op-
erations and predicates defined over internal variables and
input parameters. The label of a transition t in an EFSM
has two guards that decide the feasibility of the t: the in-
put guard gI and the domain guard gD. In order for t to
be executed gI , the guard for inputs from the environment
must be satisfied. Some inputs may carry values or specific
input parameters and gI may guard those values with the
input parameter guard gP . Note that in order to satisfy the
domain guard gD of t, it might be necessary to have taken
some specific path to the start state of t.

In EFSMs a transition path depends on the result of the
input parameter guard and the domain guard. The result
of these guards is determined dynamically depending on the
values of the internal variables and input declarations, which
in turn can assume different values after each transition.
Hence some transition paths might have no conditions as-
sociated, some might have conditions that are difficult to
satisfy and some transition paths will be infeasible. The ex-
istence of such infeasible transition paths creates difficulties
for automating the test generation process for EFSMs. The
machines that arise are complex and brute force exponen-
tial testing is infeasible [4]. Automating the test sequences
generation for EFSMs has been of interest [4, 5, 6, 1].

One way of approaching the problem is to abstract away
the data part of the EFSM and consider it as an FSM on
its own. However a transition sequence for the underlying
FSM of an EFSM cannot be guaranteed to be feasible for
the actual EFSM. Another way is to expand an EFSM to an
FSM and then use the techniques used for FSMs. However
this can lead to a combinatorial explosion.

Some recent work on generating feasible conformance test
sequences for EFSMs was presented in [1]. Our EFSM model

1081



is more general as we do not consider only linear constraints.
[1] gives a comprehensive summery of all the important work
in this field up to now. Test generation for EFSMs is still
an open research problem [1]

Generating a feasible transition path and a corresponding
input sequence for EFSMs can help with test sequence gen-
eration for EFSMs. The problem of finding a (an arbitrary)
feasible transition sequence for an EFSM and generating the
necessary input sequence to trigger, depending on the vari-
ables and conditions involved, is generally uncomputable.

Definition 1. A feasible transition path (FTP) from state
si to state sj of an EFSM M is a sequence of transitions
initiating from si and ending at sj that are feasible for at
least one combination of values of the finite set of internal
variables V of M .

Not all transitions in EFSMs have input parameter guards
and domain guards and so transitions in an EFSM M can
be categorised in the following four types: simple transitions
are those transitions that have no guard; IPB transitions are
those transitions that have input parameter guard but not
a domain guard; DPB transitions are those transitions that
have a domain guard but not an input parameter guard; and
IPB-DPB transitions are those transitions that have both an
input parameter guard and a domain guard.

Some transition paths consist of transitions with difficult
to satisfy guards. The presence of simple transitions in a
transition path makes it more likely to be an FTP since
there are no guards to be satisfied. While a random algo-
rithm could be used it does not always produce acceptable
results. In [2] GAs were used to generate UIOs for FSMs
more efficiently than a random algorithm can.

The objective of this work is to facilitate the generation
of FTPs in EFSMs. Then the necessary input to trigger
them can be generated. We focus on generating transition
paths that are likely to be feasible. The overall approach is
defining a fitness function that estimates how likely is that
a transition path is feasible and how easy is it to generate
an input sequence to trigger it. A GA is used in attempt to
generate such transition paths. The genotypes with highest
fitness are verified and GA execution repeated if necessary.

3. RESULTS AND CONCLUSIONS
A set of experiments were conducted on the EFSM M rep-

resenting the Inres protocol example [3]. A GA was used in
attempt to generate FTP between the initial and final states
of M . The results were compared to randomly generated
transition paths. To measure the feasibility of each poten-
tial FTP a random input parameter generator was used. It
randomly generates 1000 potential input parameters within
a specified range. FTPs where the random input parame-
ter generator found more input parameters that make the
transition path feasible were considered to be better.

Figure 3 shows some initial results of generating FTPs for
M . These results represent the best of 50 attempts for each
FTP length. FTPs of lengths 3 to 10 were considered since
the shortest path between the two states is 3 transitions and
the search became more difficult as the length was increased.

The GA and random generation algorithm were given at
least the same amount of generation and feasibility test ef-
fort in terms of the random input parameter generator. The
random algorithm could not find any FTPs while the GA

Figure 1: Number of evaluations to generate FTPs
for the Inres example by GA and random generation

found one for each length. The random generation algo-
rithm was given extra effort for each FTP length until it
generated an FTP. Hence the graph representing the fitness
evaluations it took the random algorithm to generate a re-
sult for each length is steeper that the one plotted by the
GA on Figure 3. The graph seems to indicate that as the
problem with finding FTPs gets larger the GA’s dominance
margin in evaluations needed increases.

Although the experiment is small it indicates the limita-
tions of the random algorithm generation and the potential
of an EFSM abstraction method and fitness function. Gen-
erating FTPs using a fitness function heuristics like GAs can
offer an advantage for automated testing of EFSMs.

We have define a novel EFSM abstraction that can help
us represent the problem of finding an FTP and generating
the input sequence needed to trigger it. The fitness function
rewards transitions with more easy to satisfy guards in order
to minimise the effort of input sequence generation. Some
results indicate that the fitness function rewards FTPs with
easy to satisfy conditions. The GA used also seems to out-
perform the random generation algorithm with an increasing
margin, as the length of the transition path is increased.

4. REFERENCES
[1] A. Y. Duale and M. Ü. Uyar. A method enabling

feasible conformance test sequence generation for
EFSM models. IEEE Transactions Computers,
53(5):614–627, 2004.

[2] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian.
Computing unique input/output sequences using
genetic algorithms. In LNCS vol. 2931, pages 169–184.
Springer, 2004.

[3] R. M. Hierons, T. H. Kim, and H. Ural. On the
testability of SDL specifications. Computer Networks,
44:681–700, 2003.

[4] D. Lee and M. Yannakakis. Principles and methods of
testing finite state machines - a survey. Proceedings of
the IEEE, 84:1090–1123, 1996.

[5] X. Li, T. Higashino, M. Higuchi, and K. Taniguchi.
Automatic generation of extended UIO sequences for
communication protocols in EFSM model. In
Distributed Processing System No.066, pages 225–240,
Japan, November 1994. IPSJ SIGNotes.

[6] A. Petrenko, S. Boroday, and R. Gorz. Confirming
configurations in EFSMs. IEEE Transactions on
Software Engineering, 30:29–42, January 2004.

1082


